Skip to main content

An Alternative Approach

·3 mins

… continued from the previous post.

Do Not Communicate by Sharing Memory; Instead, Share Memory by Communicating1 #

This approach can be taken too far. […] But as a high-level approach, using channels to control access makes it easier to write clear, correct programs.1

Let’s just for comparison reformulate the scheme in the last post with shared variables and a sync.WaitGroup:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
package main

import (
	"context"
	"sync"

	"fillmore-labs.com/blog/structured/pkg/task"
)

func doWork(ctx context.Context) error {
	ctx, cancel := context.WithCancelCause(ctx)
	defer cancel(nil)

	var firstErr error
	var once sync.Once
	setErr := func(err error) {
		if err == nil {
			return
		}
		once.Do(func() {
			firstErr = err
			cancel(err)
		})
	}

	var wg sync.WaitGroup

	wg.Add(1)
	go func() {
		defer wg.Done()
		err := task.Task(ctx, "task1", processingTime/3, nil)
		setErr(err)
	}()

	wg.Add(1)
	go func() {
		defer wg.Done()
		err := task.Task(ctx, "task2", processingTime/2, errFail)
		setErr(err)
	}()

	err := task.Task(ctx, "task3", processingTime, nil)
	setErr(err)

	wg.Wait()

	return firstErr
}

Here we replace the error channel with a function storing the first error and canceling the context. This works fine:

> go run fillmore-labs.com/blog/structured/cmd/structured2
task1 <nil>
task2 failed
task3 context canceled
Got "failed" error in 501ms

But it is a lot of boilerplate.

Refactor and Separate Concerns #

We can easily extract the orchestration part:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
package main

import (
	"context"
	"sync"
)

type Group struct {
	err    error
	cancel context.CancelCauseFunc
	once   sync.Once
	wg     sync.WaitGroup
}

func NewGroup(cancel context.CancelCauseFunc) *Group {
	return &Group{cancel: cancel}
}

func (g *Group) Do(fn func() error) {
	err := fn()
	if err == nil {
		return
	}
	g.once.Do(func() {
		g.err = err
		if g.cancel != nil {
			g.cancel(err)
		}
	})
}

func (g *Group) Go(fn func() error) {
	g.wg.Add(1)
	go func() {
		defer g.wg.Done()
		g.Do(fn)
	}()
}

func (g *Group) Wait() error {
	g.wg.Wait()

	return g.err
}

Making our function only:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
package main

import (
	"context"

	"fillmore-labs.com/blog/structured/pkg/task"
)

func doWork(ctx context.Context) error {
	ctx, cancel := context.WithCancelCause(ctx)
	defer cancel(nil)

	g := NewGroup(cancel)

	g.Go(func() error {
		return task.Task(ctx, "task1", processingTime/3, nil)
	})

	g.Go(func() error {
		return task.Task(ctx, "task2", processingTime/2, errFail)
	})

	g.Do(func() error {
		return task.Task(ctx, "task3", processingTime, nil)
	})

	return g.Wait()
}

This separates processing and orchestration, which is nice and makes our code much more readable and improves testability.

Summary #

Separating orchestration from the processing code, we can reach simplified structured concurrency with improved readability while eliminating some sources of resource leaks.

… continued in the next post.